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Abstract

We present labeled morphological segmen-
tation, an alternative view of morpholog-
ical processing that unifies several tasks.
We introduce a new hierarchy of morpho-
tactic tagsets and CHIPMUNK, a discrimi-
native morphological segmentation system
that, contrary to previous work, explicitly
models morphotactics. We show improved
performance on three tasks for all six lan-
guages: (i) morphological segmentation,
(ii) stemming and (iii) morphological tag
classification. For morphological segmen-
tation our method shows absolute improve-
ments of 2-6 points F1 over the baseline.

1 Introduction

Morphological processing is often an overlooked
problem since many well-studied languages (e.g.,
Chinese and English) are morphologically impover-
ished. But for languages with complex morphology
(e.g., Finnish and Turkish) morphological process-
ing is essential. A specific form of morphologi-
cal processing, morphological segmentation, has
shown its utility for machine translation (Dyer et al.,
2008), sentiment analysis (Abdul-Mageed et al.,
2014), bilingual word alignment (Eyigöz et al.,
2013), speech processing (Creutz et al., 2007b) and
keyword spotting (Narasimhan et al., 2014), inter
alia. We advance the state-of-the-art in supervised
morphological segmentation by describing a high-
performance, data-driven tool for handling com-
plex morphology, even in low-resource settings.

In this work, we make the distinction between
unlabeled morphological segmentation (UMS) (of-
ten just called “morphological segmentation”) and
labeled morphological segmentation (LMS). The
labels in our supervised discriminative model for
LMS capture the distinctions between different

types of morphemes and directly model the mor-
photactics. We further create a hierarchical univer-
sal tagset for labeling morphemes, with different
levels appropriate for different tasks. Our hierar-
chical tagset was designed by creating a standard
representation from heterogeneous resources for
six languages. This allows us to use a single unified
framework to obtain strong performance on three
common morphological tasks that have typically
been viewed as separate problems and addressed
using different methods. We give an overview of
the tasks addressed in this paper in Figure 1. The
figure shows the expected output for the Turkish
word gençleşmelerin ‘of rejuvenatings’. In partic-
ular, it shows the full labeled morphological seg-
mentation, from which three representations can be
directly derived: the unlabeled morphological seg-
mentation, the stem/root1 and the morphological
tag containing POS and inflectional features.

We model these tasks with CHIPMUNK, a
semi-Markov conditional random field (semi-CRF)
(Sarawagi and Cohen, 2004), a model that is well-
suited for morphology. We provide an evaluation
and analysis on six languages; CHIPMUNK yields
strong results on all three tasks, including state-of-
the-art accuracy on morphological segmentation.

Paper Outline. Section 2 presents our LMS
framework and the morphotactic tagsets we use,
i.e., the labels of the sequence prediction task CHIP-
MUNK solves. Section 3 introduces our semi-CRF
model. Section 4 presents our novel features. Sec-
tion 5 compares CHIPMUNK to previous work. Sec-
tion 6 presents experiments on the three comple-
mentary tasks of segmentation (UMS), stemming,
and morphological tag classification. Section 7

1Terminological notes: We use root to refer to a morpheme
with concrete meaning, stem to refer to the concatenation
of all roots and derivational affixes, root detection to refer
to stripping both derivational and inflectional affixes, and
stemming to refer to stripping only inflectional affixes.



gençleşmelerin
UMS genç leş me ler in
Gloss young -ate -ion -s GENITIVE MARKER

LMS genç leş me ler in
ROOT:ADJECTIVAL SUFFIX:DERIV:VERB SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL SUFFIX:INFL:NOUN:GENITIVE

Root genç Stem gençleşme Morphological Tag PLURAL:GENITIVE

Figure 1: Examples of the tasks addressed for the Turkish word gençleşmelerin ‘of rejuvenatings’: Traditional unlabeled
segmentation (UMS), Labeled morphological segmentation (LMS), stemming / root detection and (inflectional) morphological
tag classification. The morphotactic annotations produced by LMS allow us to solve these tasks using a single model.

briefly discusses finite-state morphology.
The datasets created, additional description of

our tagsets and CHIPMUNK can be found at http:
//cistern.cis.lmu.de/chipmunk.

2 Labeled Segmentation and Tagset

We define the framework of labeled morphological
segmentation (LMS), an enhancement of morpho-
logical segmentation that—in addition to identify-
ing the boundaries of segments—assigns a fine-
grained morphotactic tag to each segment. LMS
leads to both better modeling of segmentation and
subsumes several other tasks, e.g., stemming.

Most previous approaches to morphological seg-
mentation are either unlabeled or use a small,
coarse-grained set such as prefix, root, suffix. In
contrast, our labels are fine-grained. This finer
granularity has two advantages. (i) The labels are
needed for many tasks, for instance in sentiment
analysis detecting morphologically encoded nega-
tion, as in Turkish, is crucial. In other words, for
many applications UMS is insufficient. (ii) The
LMS framework allows us to learn a probabilis-
tic model of morphotactics. Working with LMS
results in higher UMS accuracy. So even in ap-
plications that only need segments and no labels,
LMS is beneficial. Note that the concatenation
of labels across segments yields a bundle of mor-
phological attributes similar to those found in the
CoNLL datasets often used to train morphological
taggers (Buchholz and Marsi, 2006)—thus LMS
helps to unify UMS and morphological tagging.
We believe that LMS is a needed extension of cur-
rent work in morphological segmentation. Our
framework concisely allows the model to capture
interdependencies among various morphemes and
model relations between entire morpheme classes—
a neglected aspect of the problem.

We first create a hierarchical tagset with increas-
ing granularity, which we created by analyzing the

heterogeneous resources for the six languages we
work on. The optimal level of granularity is task
and language dependent: the level is a trade-off
between simplicity and expressivity. We illustrate
our tagset with the decomposition of the German
word Enteisungen ‘defrostings’ (Figure 2).

The level 0 tagset involves a single tag indicat-
ing a segment. It ignores morphotactics completely
and is similar to previous work. The level 1 tagset
crudely approximates morphotactics: it consists of
the tags {PREFIX, ROOT, SUFFIX}. This scheme
has been successfully used by unsupervised seg-
menters, e.g., MORFESSOR CAT-MAP (Creutz
et al., 2007a). It allows the model to learn sim-
ple morphotactics, for instance that a prefix cannot
be followed by a suffix. This makes a decomposi-
tion like reed→ re+ed unlikely. We also add an
additional UNKNOWN tag for morphemes that do
not fit into this scheme. The level 2 tagset splits
affixes into DERIVATIONAL and INFLECTIONAL,
effectively increasing the maximal tagset size from
4 to 6. These tags can encode that many languages
allow for transitions from derivational to inflec-
tional endings, but rarely the opposite. This makes
the incorrect decomposition of German Offenheit
‘openness’ into Off, inflectional en and derivational
heit unlikely2. This tagset is also useful for build-
ing statistical stemmers. The level 3 tagset adds
POS, i.e., whether a root is VERBAL, NOMINAL

or ADJECTIVAL, and the POS of the word that an
affix derives. The level 4 tagset includes the inflec-
tional feature a suffix adds, e.g., CASE or NUMBER.
This is helpful for certain agglutinative languages,
in which, e.g., CASE must follow NUMBER. The
level 5 tagset adds the actual value of the inflec-
tional feature, e.g., PLURAL, and corresponds to
the annotation in the datasets. In preliminary exper-
iments we found that the level 5 tagset is too rich

2Like en in English open, en in German Offen is part of
the root.

http://cistern.cis.lmu.de/chipmunk
http://cistern.cis.lmu.de/chipmunk


5 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:PLURAL
4 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN:NUMBER
3 PREFIX:DERIV:VERB ROOT:NOUN SUFFIX:DERIV:NOUN SUFFIX:INFL:NOUN
2 PREFIX:DERIV ROOT SUFFIX:DERIV SUFFIX:INFL
1 PREFIX ROOT SUFFIX SUFFIX
0 SEGMENT SEGMENT SEGMENT SEGMENT

German Ent eis ung en
English de frost ing s

Figure 2: Example of the different morphotactic tagset granularities for German Enteisungen ‘defrostings’.

level: 0 1 2 3 4
English 1 4 5 13 16
Finnish 1 4 6 14 17
German 1 4 6 13 17
Indonesian 1 4 4 8 8
Turkish 1 3 4 10 20
Zulu 1 4 6 14 17

Table 1: Morphotactic tagset size at each level of granularity.

and does not yield consistent improvements, we
thus do not explore it. Table 1 shows tagset sizes
for the six languages.3

3 Model

CHIPMUNK is a supervised model implemented us-
ing the well-understood semi-Markov conditional
random field (semi-CRF) (Sarawagi and Cohen,
2004) that naturally fits the task of LMS. Semi-
CRFs generalize linear-chain CRFs and model seg-
mentation jointly with sequence labeling. Just as
linear-chain CRFs are discriminative adaptations of
hidden Markov models (Lafferty et al., 2001), semi-
CRFs are an analogous adaptation of hidden semi-
Markov models (Murphy, 2002). Semi-CRFs allow
us to integrate new features that look at complete
segments, this is not possible with CRFs, making
semi-CRFs a natural choice for morphology.

A semi-CRF represents w (a word) as a se-
quence of segments s = 〈s1, . . . , sn〉, each of
which is assigned a label `i. The concatenation
of all segments equals w. We seek a log-linear
distribution pθ(s, ` | w) over all possible segmen-
tations and label sequences for w, where θ is the
parameter vector. Note that we recover the stan-
dard CRF if we restrict the segment length to 1.
Formally, we define pθ as

pθ(s, ` | w)
def
=

1

Zθ(w)

n∏
i=1

eθ
T f(si,`i,`i−1,i), (1)

3As converting segmentation datasets to tagsets is not al-
ways straightforward, we include tags that lack some features,
e.g., some level 4 German tags lack POS because our German
data does not specify it.

where f is the feature function and Zθ(w) is the
partition function. To keep the notation unclut-
tered, we will write f without all its arguments in
the future. We use a generalization of the forward-
backward algorithm for efficient gradient compu-
tation (Sarawagi and Cohen, 2004). Inspection of
the semi-Markov forward recursion,

α(t, l) =
t−1∑
i=1

L∑
`′=1

eθ
T f ·α(t− i, `′), (2)

shows that algorithm runs inO(n2 ·L2) time where
n is the length of the wordw and L is the number
of labels (size of the tagset).

We employ the maximum-likelihood criterion
to estimate the parameters with L-BFGS (Liu and
Nocedal, 1989), a gradient-based optimization al-
gorithm. As in all exponential family models, the
gradient of the log-likelihood takes the form of the
difference between the observed and expected fea-
tures counts (Wainwright and Jordan, 2008) and
can be computed efficiently with the semi-Markov
extension of the forward-backward algorithm. We
use L2 regularization with a regularization coeffi-
cient tuned during cross-validation.

We note that semi-Markov models have the po-
tential to obviate typical errors made by standard
Markovian sequence models with an IOB labeling
scheme over characters. For instance, consider the
incorrect segmentation of the English verb sees
into se+es. These are reasonable split positions
as many English stems end in se (e.g., consider
abuse-s). Semi-CRFs have a major advantage here
as they can have segmental features that allow them
to learn se is not a good morph.

4 Features

We introduce several novel features for LMS. We
exploit existing resources, e.g., spell checkers and
Wiktionary, to create straightforward and effective
features and we incorporate ideas from related ar-
eas: named-entity recognition (NER) and morpho-
logical tagging.



# Affixes Random Examples
English 394 -ard -taxy -odon -en -otic -fold
Finnish 120 -tä -llä -ja -t -nen -hön -jä -ton
German 112 -nomie -lichenes -ell -en -yl -iv
Indonesian 5 -kau -an -nya -ku -mu
Turkish 263 -ten -suz -mek -den -t -ünüz
Zulu 72 i- u- za- tsh- mi- obu- olu-

Table 2: Sizes of the various affix gazetteers.

Affix Features and Gazetteers. In contrast to
syntax and semantics, the morphology of a lan-
guage is often simple to document and a list of the
most common morphs can be found in any good
grammar book. Wiktionary, for example, contains
affix lists for all the six languages used in our exper-
iments.4 Providing a supervised learner with such
a list is a great boon, just as gazetteer features aid
NER (Smith and Osborne, 2006)—perhaps even
more so since suffixes and prefixes are generally
closed-class; hence these lists are likely to be com-
prehensive. These features are binary and fire if
a given substring occurs in the gazetteer list. In
this paper, we simply use suffix lists from English
Wiktionary, except for Zulu, for which we use a
prefix list, see Table 2.

We also include a feature that fires on the con-
junction of tags and substrings observed in the train-
ing data. In the level 5 tagset this allows us to link
all allomorphs of a given morpheme. In the lower
level tagsets, this links related morphemes. Virpi-
oja et al. (2010) explored this idea for unsupervised
segmentation. Linking allomorphs together under
a single tag helps combat sparsity in modeling the
morphotactics.

Stem Features. A major problem in statistical
segmentation is the reluctance to posit morphs not
observed in training; this particularly affects roots,
which are open-class. This makes it nearly impos-
sible to correctly segment compounds that contain
unseen roots, e.g., to correctly segment homework
you need to know that home and work are inde-
pendent English words. We solve this problem
by incorporating spell-check features: binary fea-
tures that fire if a segment is valid for a given spell
checker. Spell-check features function effectively
as a proxy for a “root detector”. We use the open-
source ASPELL dictionaries as they are freely avail-
able in 91 languages. Table 3 shows the coverage
of these dictionaries.

4A good example of such a resource is en.wiktio-
nary.org/wiki/Category:Turkish_suffixes.

English 119,839
Finnish 6,690,417
German 364,564
Indonesian 35,269
Turkish 80,261
Zulu 73,525

Table 3: Number of words covered by the respective ASPELL
dictionary

Integrating the Features. Our model uses the
features discussed in this section and additionally
the simple n-gram context features of Ruokolainen
et al. (2013). The n-gram features look at variable
length substrings of the word on both the right and
left side of each boundary. We create conjunctive
features from the cross-product between the mor-
photactic tagset (Section 2) and the features.

5 Related Work

Van den Bosch and Daelemans (1999) and Marsi
et al. (2005) present memory-based approaches to
discriminative learning of morphological segmen-
tation. This is the previous work most similar to
our work. They address the problem of LMS. We
distinguish our work from theirs in that we define
a cross-lingual schema for defining a hierarchical
tagset for LMS. Morever, we tackle the problem
with a feature-rich log-linear model, allowing us
to easily incorporate disparate sources of knowl-
edge into a single framework, as we show in our
extensive evaluation.

UMS has been mainly addressed by unsuper-
vised algorithms. LINGUISTICA (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002) are
built around an idea of optimally encoding the data,
in the sense of minimal description length (MDL).
MORFESSOR CAT-MAP (Creutz et al., 2007a) for-
mulates the model as sequence prediction based
on HMMs over a morph dictionary and MAP es-
timation. The model also attempts to induce ba-
sic morphotactic categories (PREFIX, ROOT, SUF-
FIX). Kohonen et al. (2010a,b) and Grönroos et al.
(2014) present variations of MORFESSOR for semi-
supervised learning. Poon et al. (2009) introduces
a Bayesian state-space model with corpus-wide
priors. The model resembles a semi-CRF, but dy-
namic programming is no longer possible due to
the priors. They employ the three-state tagset of
Creutz and Lagus (2004) (row 1 in Figure 2) for
Arabic and Hebrew UMS. Their gradient and ob-
jective computation is based on an enumeration of

en.wiktio-
nary.org/wiki/Category:Turkish_suffixes


Un. Data Train+Tune+Dev Test
Train Tune Dev

English 878k 800 100 100 694
Finnish 2,928k 800 100 100 835
German 2,338k 800 100 100 751
Indonesian 88k 800 100 100 2500
Turkish 617k 800 100 100 763
Zulu 123k 800 100 100 9040

Table 4: Dataset sizes (number of types).

a heuristically chosen subset of the exponentially
many segmentations. This limits its applicability to
language with complex concatenative morphology,
e.g., Turkish and Finnish.

Ruokolainen et al. (2013) present an averaged
perceptron (Collins, 2002), a discriminative struc-
tured prediction method, for UMS. The model out-
performs the semi-supervised model of Poon et al.
(2009) on Arabic and Hebrew morpheme segmenta-
tion as well as the semi-supervised model of Koho-
nen et al. (2010a) on English, Finnish and Turkish.

Finally, Ruokolainen et al. (2014) get further
consistent improvements by using features ex-
tracted from large corpora, based on the letter suc-
cessor variety (LSV) model (Harris, 1995) and on
unsupervised segmentation models such as Mor-
fessor CatMAP (Creutz et al., 2007a). The idea
behind LSV is that for example talking should be
split into talk and ing, because talk can also be fol-
lowed by different letters then i such as e (talked)
and s (talks).

Chinese word segmentation (CWS) is related
to UMS. Andrew (2006) successfully apply semi-
CRFs to CWS. The problem of joint CWS and
POS tagging (Ng and Low, 2004; Zhang and Clark,
2008) is related to LMS. To our knowledge, joint
CWS and POS tagging has not been addressed
by a simple single semi-CRF, possibly because
POS tagsets typically used in Chinese treebanks are
much bigger than our morphotactic tagsets and the
morphological poverty of Chinese makes higher-
order models necessary and the direct application
of semi-CRFs infeasible.

6 Experiments

We experimented on six languages from diverse lan-
guage families. The segmentation data for English,
Finnish and Turkish was taken from MorphoChal-
lenge 2010 (Kurimo et al., 2010).5 Despite typi-
cally being used for UMS tasks, the MorphoChal-

5http://research.ics.aalto.fi/events/
morphochallenge2010/

lenge datasets do contain morpheme level labels.
The German data was extracted from the CELEX2
collection (Baayen et al., 1993). The Zulu data was
taken from the Ukwabelana corpus (Spiegler et al.,
2010). Finally, the Indonesian portion was cre-
ated applying the rule-based analyzer MORPHIND

(Larasati et al., 2011) to the Indonesian portion of
an Indonesian-English bilingual corpus.6

We did not have access to the MorphoChallenge
test set and thus used the original development set
as our final evaluation set (Test). We developed
CHIPMUNK using 10-fold cross-validation on the
1000 word training set and split every fold into
training (Train), tuning (Tune) and development
sets (Dev).7 For German, Indonesian and Zulu we
randomly selected 1000 word forms as training set
and used the rest as evaluation set. For our final
evaluation we trained CHIPMUNK on the concate-
nation of Train, Tune and Dev (the original 1000
word training set), using the optimal parameters
from the cross-evaluation and tested on Test.

One of our baselines also uses unlabeled training
data. MorphoChallenge provides word lists for
English, Finnish, German and Turkish. We use the
unannotated part of Ukwabelana for Zulu; and for
Indonesian, data from Wikipedia and the corpus of
Krisnawati and Schulz (2013).

Table 4 shows the important statistics of our
datasets.

In all evaluations, we use variants of the standard
MorphoChallenge evaluation approach. Impor-
tantly, for word types with multiple correct segmen-
tations, this involves finding the maximum score
by comparing our hypothesized segmentation with
each correct segmentation, as is standardly done in
MorphoChallenge.

6.1 UMS Experiments

We first evaluate CHIPMUNK on UMS, by predict-
ing LMS and then discarding the labels. Our pri-
mary baseline is the state-of-the-art supervised sys-
tem CRF-MORPH of Ruokolainen et al. (2013).
We ran the version of the system that the authors
published on their website.8 We optimized the
model’s two hyperparameters on Tune: the number

6https://github.com/desmond86/
Indonesian-English-Bilingual-Corpus

7We used both Tune and Dev in order to both optimize hy-
perparameters on held-out data (Tune) and perform qualitative
error analysis on separate held-out data (Dev).

8http://users.ics.tkk.fi/tpruokol/
software/crfs_morph.zip

http://research.ics.aalto.fi/events/morphochallenge2010/
http://research.ics.aalto.fi/events/morphochallenge2010/
https://github.com/desmond86/Indonesian-English-Bilingual-Corpus
https://github.com/desmond86/Indonesian-English-Bilingual-Corpus
http://users.ics.tkk.fi/tpruokol/software/crfs_morph.zip
http://users.ics.tkk.fi/tpruokol/software/crfs_morph.zip


English Finnish Indonesian German Turkish Zulu
CRF-MORPH 83.23 81.98 93.09 84.94 88.32 88.48
CRF-MORPH +LSV 84.45 84.35 93.50 86.90 89.98 89.06
First-order CRF 84.66 85.05 93.31 85.47 90.03 88.99
Higher-order CRF 84.66 84.78 93.88 85.40 90.65 88.85
CHIPMUNK 84.40 84.40 93.76 85.53 89.72 87.80
CHIPMUNK +Morph 83.27 84.71 93.17 84.84 90.48 90.03
CHIPMUNK +Affix 83.81 86.02 93.51 85.81 89.72 89.64
CHIPMUNK +Dict 86.10 86.11 95.39 87.76 90.45 88.66
CHIPMUNK +Dict,+Affix,+Morph 86.31 88.38 95.41 87.85 91.36 90.16

Table 5: Test F1 for UMS. Features: LSV = letter successor variety, Affix = affix, Dict = dictionary, Morph = optimal (on Tune)
morphotactic tagset.

of epochs and the maximal length of n-gram char-
acter features. The system also supports Harris’s
letter successor variety (LSV) features (Section 5),
extracted from large unannotated corpora, our sec-
ond baseline. For completeness, we also compare
CHIPMUNK with a first-order CRF and a higher-
order CRF (Müller et al., 2013), both used the same
n-gram features as CRF-MORPH, but without the
LSV features.9 We evaluate all models using the
traditional macro F1 of the segmentation bound-
aries.

Discussion. The UMS results on held-out data
are displayed in Table 5. Our most complex model
beats the best baseline by between 1 (German) and
3 (Finnish) points F1 on all six languages. We
additionally provide extensive ablation studies to
highlight the contribution of our novel features. We
find that the properties of each specific language
highly influences which features are most effective.
For the agglutinative languages, i.e, Finnish, Turk-
ish and Zulu, the affix based features (+Affix) and
the morphotactic tagset (+Morph) yield consistent
improvements over the semi-CRF models with a
single state. Improvements for the affix features
range from 0.2 for Turkish to 2.14 for Zulu. The
morphological tagset yields improvements of 0.77
for Finnish, 1.89 for Turkish and 2.10 for Zulu. We
optimized tagset granularity on Tune and found that
levels 4 and level 2 yielded the best results for the
three agglutinative and the three other languages,
respectively.

The dictionary features (+Dict) help universally,
but their effects are particularly salient in lan-
guages with productive compounding, i.e., English,
Finnish and German, where we see improvements

9Model order, maximal character n-gram length and regu-
larization coefficients were optimized on Tune.

+Affix +Dict,+Affix
Level 0 90.11 90.13 91.66
Level 1 90.73 90.68 92.80
Level 2 89.80 90.46 92.04
Level 3 91.03 90.83 92.31
Level 4 91.80 92.19 93.21

Table 6: Example of the effect of larger tagsets (Figure 2) on
Turkish segmentation measured on our development set. As
Turkish is an agglutinative language with hundreds of affixes,
the efficacy of our approach is expected to be particularly
salient here. Recall we optimized for the best tagset granularity
for our experiments on Tune.

of > 1.7.
In comparison with previous work (Ruokolainen

et al., 2013) we find that our most complex model
yields consistent improvements over CRF-MORPH

+LSV for all languages: The improvements range
from > 1 for German over > 1.5 for Zulu, English,
and Indonesian to > 2 for Turkish and > 4 for
Finnish.

To illustrate the effect of modeling morphotac-
tics through the larger morphotactic tagset on per-
formance, we provide a detailed analysis of Turk-
ish. See Table 6. We consider three different fea-
ture sets and increase the size of the morphotactic
tagsets depicted in Figure 2. The results evince the
general trend that improved morphotactic modeling
benefits segmentation. Additionally, we observe
that the improvements are complementary to those
from the other features.

As discussed earlier, a key problem in UMS, es-
pecially in low-resource settings, is the detection of
novel roots and affixes. Since many of our features
were designed to combat this problem specifically,
we investigated this aspect independently. Table 7
shows the number of novel roots and affixes found
by our best model and the baseline. In all lan-
guages, CHIPMUNK correctly identifies between
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Figure 3: This figure represents a comparative analysis of
undersegmentation. Each column (labels at the bottom) shows
how often CRF-MORPH +LSV (top number in heatmap) and
CHIPMUNK (bottom number in heatmap) select a segment
that is two separate segments in the gold standard. E.g., Rt-
Sx indicates how a root and a suffix were treated as a single
segment. The color depends on the difference of the two
counts.

5% (English) and 22% (Finnish) more novel roots
than the baseline. We do not see major improve-
ments for affixes, but this is of less interest as there
are far fewer novel affixes.

We further explore how CHIPMUNK and the
baseline perform on different boundary types by
looking at missing boundaries between different
morphotactic types; this error type is also known as
undersegmentation. Figure 3 shows a heatmap that
overviews errors broken down by morphotactic tag.
We see that most errors are caused between root
and suffixes across all languages. This is related to
the problem of finding new roots, as a new root is
often mistaken as a root-affix composition.

6.2 Root Detection and Stemming
Root detection1 and stemming1 are two important
NLP problems that are closely related to morpho-
logical segmentation and used in applications such
as MT, information retrieval, parsing and infor-
mation extraction. Here we explore the utility of
CHIPMUNK as a statistical stemmer and root detec-
tor.

Stemming is closely related to the task of lemma-
tization, which involves the additional step of nor-
malizing to the canonical form.10 Consider the
German particle verb participle auf-ge-schrieb-en
‘written down’. The participle is built by apply-

10Thus in our experiments there are no stem alternations.
The output is equivalent to that of the Porter stemmer (Porter,
1980).

CRF-MORPH CHIPMUNK
Roots Affixes Roots Affixes

English 614 6 644 12
Finnish 502 10 613 11
German 360 6 414 9
Indonesian 593 0 639 0
Turkish 435 22 514 19
Zulu 146 10 160 11

Table 7: Dev number of unseen root and affix types cor-
rectly identified by CRF-MORPH +LSV and CHIPMUNK +Af-
fix,+Dict,+Morph.

ing an alternation to the verbal root schreib ‘write’
adding the participial circumfix ge-en and finally
adding the verb particle auf. In our segmentation-
based definition, we would consider schrieb ‘write’
as its root and auf-schrieb as its stem. In order to
additionally to restore the lemma, we would also
have to reverse the stem alternation that replaced
ei with ie and add the infinitival ending en yielding
the infinitive auf-schreib-en.

Our baseline MORFETTE (Chrupała et al., 2008)
is a statistical transducer that first extracts edit paths
between input and output and then uses a percep-
tron classifier to decide which edit path to apply.
In short, MORFETTE treats the task as a string-to-
string transduction problem, whereas we view it
as a labeled segmentation problem.11 Note, that
MORFETTE would in principle be able to handle
stem alternations, although these usually lead to an
increase in the number of edit paths. We use level
2 tagsets for all experiments—the smallest tagsets
complex enough for stemming—and extract the
relevant segments.

Discussion. Our results are shown in Table 8. We
see consistent improvements across all tasks. For
the fusional languages (English, German and In-
donesian) we see modest gains in performance on
both root detection and stemming. However, for the
agglutinative languages (Finnish, Turkish and Zulu)
we see absolute gains as high as 50% (Turkish) in
accuracy. This significant improvement is due to
the complexity of the tasks in these languages—
their productive morphology increases sparsity and
makes the unstructured string-to-string transduc-
tion approach suboptimal. We view this as solid
evidence that labeled segmentation has utility in
many components of the NLP pipeline.

11Note that MORFETTE is a pipeline that first tags and then
lemmatizes. We only make use of this second part of MOR-
FETTE for which it is a strong string-to-string transduction
baseline.



English Finnish German Indonesian Turkish Zulu
Root MORFETTE 62.82 39.28 43.81 86.00 26.08 30.76
Detection CHIPMUNK 70.31 69.85 67.37 90.00 75.62 62.23
Stemming MORFETTE 91.35 51.74 79.49 86.00 28.57 58.12

CHIPMUNK 94.24 79.23 85.75 89.36 85.06 67.64

Table 8: Test Accuracies for root detection and stemming.

Finnish Turkish
F1 MaxEnt 75.61 69.92

MaxEnt +Split 74.02 76.61
CHIPMUNK +All 80.34 85.07

Acc. MaxEnt 60.96 37.88
MaxEnt +Split 59.04 44.30
CHIPMUNK +All 65.00 56.06

Table 9: Test F-Scores / accuracies for morphological tag
classification.

Morpheme Tags Full Word Tags
Finnish 43 172
Turkish 50 636

Table 10: Number of full word and morpheme tags in the
datasets.

6.3 Morphological Tag Classification

The joint modeling of segmentation and morpho-
tactic tags allows us to use CHIPMUNK for a crude
form of morphological analysis: the task of mor-
phological tag classification, which we define as
annotation of a word with its most likely inflec-
tional features.12 To be concrete, our task is to
predict the inflectional features of word type based
only on its character sequence and not its sentential
context. To this end, we take Finnish and Turkish
as two examples of languages that should suit our
approach particularly well as both have highly com-
plex inflectional morphologies. We use our most
fine-grained tagset and replace all non-inflectional
tags with a simple segment tag. The tagset sizes
are listed in Table 10.

We use the same experimental setup as in Sec-
tion 6.2 and compare CHIPMUNK to a maximum
entropy classifier (MaxEnt), whose features are
character n-grams of up to a maximal length of
k. 13 The maximum entropy classifier is L1-
regularized and its regularization coefficient as well
as the value for k are optimized on Tune. As a sec-

12We recognize that this task is best performed with sen-
tential context (token-based). Integration with a POS tagger,
however, is beyond the scope of this paper.

13Prefixes and suffixes are explicitly marked.

ond, stronger baseline we use a MaxEnt classifier
that splits tags into their constituents and concate-
nates the features with every constituent as well
as the complete tag (MaxEnt +Split). Both of the
baselines in Table 9 are 0th-order versions of the
state-of-the-art CRF-based morphological tagger
MARMOT (Müller et al., 2013) (since our model
is type-based), making this a strong baseline. We
report full analysis accuracy and macro F1 on the
set of individual inflectional features.

Discussion. The results in Table 9 show that our
proposed method outperforms both baselines on
both performance metrics. We see gains of over
6% in accuracy in both languages. This is evidence
that our proposed approach could be successfully
integrated into a morphological tagger to give a
stronger character-based signal.

7 Comparison to Finite-State
Morphology

A morphological finite-state analyzer is customar-
ily a hand-crafted tool that generates all the possi-
ble morphological readings with their associated
features. We believe that, for many applications,
high quality finite-state morphological analysis is
superior to our techniques. Finite-state morpholog-
ical analyzers output a small set of linguistically
valid analyses of a type, typically with only limited
overgeneration. However, there are two signifi-
cant problems. The first is that significant effort is
required to develop the transducers modeling the
“grammar” of the morphology and there is signifi-
cant effort in creating and updating the lexicon. The
second is, it is difficult to use finite-state morphol-
ogy to guess analyses involving roots not covered
in the lexicon.14 In fact, this is usually solved by
viewing it as a different problem, morphological
guessing, where linguistic knowledge similar to the
features we have presented is used to try to guess
POS and morphological analysis for types with no
analysis.

14While one can in theory put in wildcard root states, this
does not work in practice due to overgeneration.



In contrast, our training procedure learns a prob-
abilistic transducer, which is a soft version of the
type of hand-engineered grammar that is used in
finite-state analyzers. The 1-best labeled morpho-
logical segmentation our model produces offers a
simple and clean representation which will be of
great use in many downstream applications. Fur-
thermore our model unifies analysis and guess-
ing into a single simple framework. Nevertheless,
finite-state morphologies are still extremely use-
ful, high-precision tools. A primary goal of future
work will be to use CHIPMUNK to attempt to induce
higher-quality morphological processing systems.

8 Conclusion and Future Work

We have presented labeled morphological segmen-
tation (LMS) in this paper, a new approach to mor-
phological processing. LMS unifies three tasks
that were solved before by different methods—
unlabeled morphological segmentation, stemming,
and morphological tag classification. LMS annota-
tion itself has great potential for use in downstream
NLP applications. Our hierarchy of labeled mor-
phological segmentation tagsets can be used to map
the heterogeneous data in six languages we work
with to universal representations of different gran-
ularities. We plan future creation of gold standard
segmentations in more languages using our annota-
tion scheme.

We further presented CHIPMUNK a semi-CRF-
based model for LMS that allows for the integra-
tion of various linguistic features and consistently
out-performs previously presented approaches to
unlabeled morphological segmentation. An impor-
tant extension of CHIPMUNK is embedding it in a
context-sensitive POS tagger. Current state-of-the-
art models only employ character level n-gram fea-
tures to model word-internals (Müller et al., 2013).
We have demonstrated that our structured approach
outperforms this baseline. We leave this natural
extension to future work.

The datasets used in this work, additional de-
scription of our novel tagsets and CHIPMUNK

can be found at http://cistern.cis.lmu.de/

chipmunk.
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A Semi-CRF

Semi-CRFs (Sarawagi and Cohen, 2004) general-
ize linear-chain CRFs and model segmentation in
addition to sequence labeling. Linear-chain CRFs
are discriminative adaptations of hidden Markov
Models (Lafferty et al., 2001); semi-CRFs are an
analogous adaptation of hidden semi-Markov mod-
els (Murphy, 2002). The major advantage of semi-
CRFs is that we can have features which look at
complete segments, which allows us to elegantly
integrate our new features.

A semi-CRF represents w (a word) as a se-
quence of segments s = 〈s1, . . . , sn〉, each of
which is assigned a label `i. The segments si are
required to have positive length. The concatena-
tion of all segments equals the wordw. We seek a
log-linear distribution pθ(s, ` | w) over all possi-
ble segmentations and label sequences for wordw
where f is the feature function and θ is the parame-
ter vector. Note we recover the standard CRF if we
restrict segment length to 1. Formally, we define
the distribution as

pθ(s, ` | w)
def
=

1

Zθ(w)

|s|∏
i=1

eθ
T f(w,si,`i,`i−1,i),

where f is the feature function and Zθ(w)

Zθ(w)
def
=

∑
s,`

|s|∏
i=1

eθ
T f(w,si,`i,`i−1,i),

is the partition function, which ensures that the
measure is normalized. We use a generalization
of the forward-backward algorithm for efficient
computation of the gradient (Sarawagi and Cohen,
2004).

The dynamic programming recursions are quite
similar to those used for a standard CRF and HMM
(Rabiner, 1989). Inspection of the semi-Markov
forward recursion,

α(t, `) =
t−1∑
i=1

L∑
`′=1

eθ
T f(w,wt−i,t,`,`

′,i) ·α(t− i, `′),

shows that the program runs in O(n2 · L2) time
where n is the length of the word w and L is the
number of labels (size of the tagset). While only
a factor of n slower than a standard linear-chain

CRF, the semi-CRF can be significantly slower in
practice due to the frequency of long words (more
than 20 letters) in agglutinative languages such as
Turkish and Finnish.15

A.1 Parameter Estimation

All models were optimized using the L-BFGS algo-
rithm — a general purpose algorithm for moderate-
scale non-linear gradient-based optimization (Liu
and Nocedal, 1989). We combat overfitting with
a simple λ · || · ||22 regularizer on the parameters.
This acts as a Gaussian prior over the weights and
disfavors single, large parameter values by encour-
aging various weights to “share the load”. As in
all exponential family models, the gradient of the
log-likelihood takes the form of the difference be-
tween the observed feature counts and expected
feature counts (Wainwright and Jordan, 2008). In
the case of the semi-CRF, we have the following
expression:

∂

∂θ
L(θ) =

|s|∑
i=1

f(w, si, `i, `i−1)−

∑
s′,`′

|s|∑
i=1

pθ(s
′
i, `
′
i | `′i−1,w) · f(w, s′i, `′i, `′i−1),

where L is the log-likelihood, s is the observed se-
quence of segments, ` is the observed sequence of
labels andw is the word. Note the expected counts
are also computed using the forward-backward al-
gorithm.16 (Chen and Rosenfeld, 1999).

B Additional Tables

English 119,839
Finnish 6,690,417
German 364,564
Indonesian 35,269
Turkish 80,261
Zulu 73,525

Table 11: Number of words covered by the respective ASPELL
dictionary

15This recursion describes an algorithm that allows for se-
quences with arbitrary length. If we have a maximum segment
limit of m, we get an algorithm that runs in O(n · m · L2)
time as in (Sarawagi and Cohen, 2004).

16This is the gradient for a single word–we have omitted
the sum over the data for simplicity.



Morpheme Tags Full Word Tags
Finnish 43 172
Turkish 50 636

Table 12: Number of full word and morpheme tags in the
datasets.


